Utility Energy Forum

Microgrids for All – for Customer and Utility Benefit

April 26, 2018

Bruce Nordman Lawrence Berkeley National Laboratory bnordman@lbl.gov – nordman.lbl.gov

Image from Eric Brewer talk **"Energy in the Developing World"** January 14, 2010 (LoCal Retreat)

Photo: Matthew Kam, TIER School near Lucknow, India

Power Distribution features we need

- "Plug-and-play" operation
 - End-use devices
 - Local generation
 - Local storage
- Improved safety
- Arbitrary power topologies inter-building links
- Fine-grained management of constrained supply
 - Optimal use of distributed storage
- Greater reliability and lesser
- Universal technologies
- Enabling optimal operation with a local price
- Security / privacy
- Greater efficiency with Direct DC

"Local Power Distribution"

- "Local" within a building (or campus)
 Internal to single customer
- "Power Distribution"
 - "Technology / infrastructure that moves electrons from devices where they are available to devices where they are wanted"

Local Power Distribution is a **network model of power**

Grid terminology

Microgrid

Capability

"... a group of interconnected loads and distributed energy resources ...that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode." (DOE Microgrid Exchange Group)

Implies must connect to utility grid; CIGRE C6-22 defn. similar

Nanogrid

Simplicity

"A **single domain of power**; single voltage, frequency (if AC), reliability, quality, capacity (power), **price**, and administration. Storage is internal to a nanogrid." Generation forms its own nanogrid. (Nordman, 2010)

• Picogrid

Singularity

An **individual device with its own internal battery** for operation when external sources are not available or not preferred, and managed use of the battery. *(S. Ghai et al. in* e-energy 2013; *paraphrased)*

136 ... 87 years later

Generation End use

Distribution

Buildings and all devices part of the pool

Communications and Power

- Phone system and utility grid invented about same time
 - Synchronous highly coupled
 - Unitary to end points centrally managed
 - Organizations conservative regulated
 - Technology advances slowly
 - Local variations in technology
 - One mode of operation

Paradigms	
Unitary Old phone system	Networked Internet
Utility grid	Network model of power
19 th century	20 th /21 st century
Centralized	Distributed
Analog	Digital
No storage	Storage widespread
Tightly coupled	Loosely coupled
Entangled technology	Isolated technologies
Custom / Expensive	Commodity / Cheap
	•••••

£.

Need paradigm shift

Power & information distribution

"Technology / infrastructure that moves data / electrons from devices where they are available to devices where they are wanted"

All bits/packets different; all electrons same

- Need a **fundamental mechanism** for a network model
- Communications: understand system topology (addressing) and move data accordingly
 - Data routing is how bits know where to go
- Power: balance supply and demand
 - <u>Price</u> is how electrons know where to go
 - Routing power makes no sense

Location, quantity, timing

Price is how devices know which way power should flow

Paradigm changes

Buildings need three Layered Models

Narrow waist in layering **isolates complexity** – facilitates interoperability

- Conventional network communication

 Application and physical layers
- Electricity / utility meter
 - Separate utility grid from building
 - "Highly dynamic pricing"
 - Use only Price, Quantity
 - Only 1-way communication
- Device internal Network Power Integration

Layered model for device operation for Local Power Distribution

Network Power Integration

NPI layers

- 5. Functional coordination4. Device discovery and events 3. Internal integration — Quantity
- 2. Exchange within/between grids
- 1. Transport of electrons

What is a Nanogrid?

- Smallest unit of power distribution
- Single physical layer (voltage; usually DC)
- Single domain: administration, reliability, capacity, and **price**
- Can interoperate with other local grids through gateways
 - Generation forms own nanogrid
 - Only two device types: grid controller and load
- In fully-functioning nanogrid, all links include communications
- Wide range in technology, capability, capacity

Price is how devices know which way power should flow

Price is how devices know which way power should flow

Power Distribution features we need

- "Plug-and-play" operation
 - End-use devices
 - Local generation
 - Local storage

Improved safety

LPD provides these features

- Arbitrary power topologies inter-building links
- Fine-grained management of constrained supply
 - Optimal use of distributed storage
- Greater reliability and lesser
- Universal technologies
- Enabling optimal operation with a local price
- Security / privacy
- Greater efficiency with Direct DC

Myth of uniform power availability

- Electricity is <u>not</u> equally available across space and time
 - Has long been true within utility grid
 - "Locational Marginal Price"
 - Increasingly true within buildings

- Local storage and/or generation, islanded grids, capacity constraints, combined heat-and-power, vehicles/mobile
- Technology we have today presumes uniform availability – hence constant price
- Dynamic pricing at meter a needed starting point
 Grid can express preferences to customer

Reasons for differing local prices

- Differential buy/sell prices from utility
- Local valuation of carbon
- Losses from AC/DC or voltage conversion, battery losses, wiring losses
- Capacity constraints
- Off-grid operation incl. mobile
- Battery management goals

- Local generation conditions (dispatch; co-gen)
- Price always current price and non-binding forecast of future prices

Everyone's 2nd Microgrid

Issue

- Communications (VOIP, Internet) no longer reliable during grid outages
- AC UPS are expensive, inefficient, non-optimized

Solution

- All communication devices be USB-powered
- Consumers have USB hub with integral battery
- Battery provides reliable power for many hours
- Hub can signal when on battery
 - Devices can reduce services to save power
- Battery can provide demand response services
- Could connect PV panel for multi-day reliability
 - Buy solar one panel at a time
 - No permits, no prof. labor plug-and-play
- Can take camping

How is this good for customers?

- Inexpensive local reliability (microgrids)
- Buy PV one panel at a time
- Easy storage integration
- Flexibility mobility
- Price-responsiveness for TOU and beyond
- Efficiency (Direct DC)
- Isolates complexity of grid from building

 Don't need aggregators
- Great for privacy / security (1-way comm.)

How is this good for utilities?

- All devices can participate in price-based demand response
 - Maximize use of customer flexibility
 - Minimize costs for customer flexibility
 - Align utility and customer interests
- Turning off feeders in emergencies easier
 - Can relax reliability (quality) goals
- Isolates complexity of buildings from grid
 Don't need aggregators
- Great for privacy / security (1-way comm.)

Summary

- Networked electricity key to 'microgrids for all'
 - Local Power Distribution highly practical
 - You Can Help
- Highly Dynamic Pricing is a critical need
 - Best for customers
 - Best for utilities
 - Best for environment
 - Synergistic with networked electricity

Thank you

