

Connected Ecosystems and the Potential to Enable an Integrated Energy Network

Ben Clarin Sr. Project Manager

38th Utility Energy Forum April 26th, 2018

What is EPRI and Energy Utilization at EPRI?

Mission: Advancing *safe*, *reliable*, *affordable* and *environmentally responsible* electricity for society through global collaboration, thought leadership and science & technology innovation

Address All Levels of Technology Pipeline

Connecting Customers (and Devices)

Key Long Term Trends

Decarbonization

Advanced Energy Communities

Grid Integration and Grid Hardening

Electrification

eurelectric

ACTIVE DISTRIBUTION SYSTEM MANAGEMENT

of distributed generation rull discussion paper

Introduction to Advanced Energy Communities

 Advanced Energy Communities (AECs) integrate multiple customer resources such as energy efficiency, demand response, customer storage, solar PV (or other local generation), electrification and electric vehicles in an electrically contiguous area. An AEC differs from a generic group of DER such that the portfolio of end use technologies and energy resources within an AEC are planned from inception to achieve common customer objectives such as comfort, cost and convenience while delivering societal goals like decarbonization and grid hardening.

Understanding AEC Performance using Smart Energy Devices

AEC Whitepaper

Example AEC – Southern Company/Alabama Power Smart Neighborhood

62 HERS 45 Homes

Front of the Meter DERs (Microgrid)

Emerging Residential Technologies

Device	Data Parameters (example)	
AMI	kW/kWh	
Circuit Level Monitoring	kW/kWh at the circuit breaker level	
Smart Thermostats	Temperature Setpoints, Indoor Temperature, HVAC runtime, etc.	
Connected Water Heaters	Water Temp, Runtime, Setpoints, Operating Modes, etc.	
Smart Appliances	Temperature settings (Fridge), DR event participation, etc.	
Microgrid	Frequency, Voltage, Main Power, Solar Power, Battery Energy, State of Charge, etc.	
Survey Data	Customer responses	

Comprehensive data collection of both utility and customer data

Alabama Power Smart Neighborhood (Some Analysis)

Advanced Energy Community

Advanced Energy Community (est. 5-10TB)

Grid Management Use Cases Community scale distribution impacts

distribution

practices

Experience

DERs

· Demand management technologies for

Recommendations for distribution planning.

· Smart Home services and Advanced User

Understanding customer preferences for

· Enabling utility IDSM programs through

· Microgrid technology and benefits

. Load aggregation for ISO benefits

Utility Services Use Cases

services and targeting

IDSM Use Cases

- Modeled vs. measured building energy use performance
- Customer acceptance of utility energy management services
- Electrification of building energy systems and impact on energy use and emissions
- Control systems for aggregation of customer owned resources
- Energy management for energy cost and rate optimization
- Usage patterns for electric vehicles and other customer systems
- Measurement of building capacitance for grid services

Research Questions of Interest

January 2018 Frequency of HPWH Electric Resistance Strip Heat Usage (n=7 Homes)

Operational performance of Advanced Heat Pump Water Heaters

Attributing community peak-load system energy consumption

Other Advanced Energy Communities Across the Country

Connected Devices → Connected Ecosystems

All in a space of rapid technology change

Core Functions of Connected Ecosystems

Optimization – Use of data and customer inputs to provide autonomous programming and response targeted for a specific need.	Orchestration – Coordinated programming and response of enduse loads with a premise.	Aggregation - Grouping of end- use loads, typically of the same end-use to respond to particular utility controlled signals.
Examples – Whisker Labs and Nest Labs	Examples – Amazon Alexa, Samsung SmartThings	Examples – EnergyHub, AutoGrid.

Why Voice Assistants?

Background:

- The technology says we should
- Utility customer use cases say we should
- The market said we should
- My mom said I should

Previous EPRI Research (2017)

- Lab implementation of proxy utility DR event using Amazon Echo
- Field deployments of Amazon Echo

Research Questions

- How can voice assistants control multiple loads within a premise and enable whole-building DR?
- What DSM opportunities can be enabled via home ecosystems centered around voice assistants?
- What other customer engagement opportunities are enabled by these platforms?

Amazon Echo Skills to Enable Premise-Level Demand Response

Architecture for Whole-Home DR

Hey Google and Alexa, What's Next?

Research Question

"Hey Google and Alexa, How can we embed an energy journey into an existing customer journey?"

Get Involved:

- Webcast: May 9th, 2018 11AM PDT (2PM EDT)
- Guest Panelist from Google Home
- Discussion on utility use cases and existing technical and market gaps to enable these use cases.
- Connected Ecosystem Workshop

Market and utility integration w/ Voice Assistants

How (and how frequent) customers are using voice assistants (Source Voicebot.ai)

Why Just Control? Orchestration Leading to Personalization

Better understanding of the customer leads to personalized/customized energy journeys

Questions... And Save the Date!

Building Electrification and Decarbonization Workshop on Monday Aug 20

For more information and to join our mailing list, go to www.electrification2018.com

Together...Shaping the Future of Electricity

